Machine Learning and Big Data-enabled Biotechnology
Machine Learning and Big Data-enabled Biotechnology
The book discusses how Machine Learning and Big Data is and can be used in biotechnology for a wide breath of topics. It is separated
into three main parts, with the first covering DNA and ranging from ?synthetic biology part design (such as promoters)? to ?predictions from genome sequences?. The second part concerns proteins, with topics ranging from ?structure and design tools? to ?pathway discovery / retrobiosynthesis?, while the last part covers whole cells and ranges from ?Machine Learning approaches for gene expression? to ?Machine Learning predictions of phenotype and bioreactor performance?
Part I - From DNA?
into three main parts, with the first covering DNA and ranging from ?synthetic biology part design (such as promoters)? to ?predictions from genome sequences?. The second part concerns proteins, with topics ranging from ?structure and design tools? to ?pathway discovery / retrobiosynthesis?, while the last part covers whole cells and ranges from ?Machine Learning approaches for gene expression? to ?Machine Learning predictions of phenotype and bioreactor performance?
Part I - From DNA?
1 Deep learning approaches for synthetic biology part design
2 Automated approaches for GSM development from DNA sequence
3 Predictive models from genome sequences
Part II - ?.to Proteins?
4 De novo protein structure and design tools
5 Machine learning approaches for protein engineering
6 Pathway discovery / Retrobiosynthesis
7 Enzyme functional classifications
8 Proteomics machine learning approaches and de novo identification
Part III - ?to whole cells and beyond
9 Machine learning approaches for gene expression
10 Metabolomics big data approaches
11 Use of Generative AI and natural language processing for cell models
12 Metabolic production, strain engineering, and flux design
13 Automated function and learning in biofoundries/strain designs
14 Machine learning predictions of phenotype and bioreactor performance
Alper, Hal S.
ISBN | 9783527354740 |
---|---|
Article number | 9783527354740 |
Media type | Book |
Edition number | 1. Auflage |
Copyright year | 2026 |
Publisher | Wiley-VCH |
Length | 432 pages |
Illustrations | 19 Tabellen |
Language | English |