Materials for High-Temperature Fuel Cells

Materials for High-Temperature Fuel Cells

147,99 €*

lieferbar, sofort per Download

The world's ever-growing demand for power has created an urgent need for new efficient and sustainable sources of energy and electricity. Today's consumers of portable electronics also demand devices that not only deliver more power but are also environmentally friendly. Fuel cells are an important alternative energy source, with promise in military, commercial and industrial applications, for example power vehicles and portable devices.

A fuel cell is an electrochemical device that directly converts the chemical energy of a fuel into electrical energy. Fuel cells represent the most efficient energy conversion technologies to-date and are an integral part in the new and renewable energy chain (e.g., solar, wind and hydropower). Fuel cells can be classified as either high-temperature or lowtemperature, depending on their operating temperature, and have different materials requirements. This book is dedicated to the study of high temperature fuel cells. In hightemperature fuel cells, the electrolyte materials are ceramic or molten carbonate, while the electrode materials are ceramic or metal (but not precious metal). High operation temperature fuel cells allow internal reforming, promote rapid kinetics with non-precious materials and offer high flexibilities in fuel choice, and are potential and viable candidate to moderate the fast increase in power requirements and to minimize the impact of the
increased power consumption on the environment.

'Materials for High Temperature Fuel Cells' is part of the series on Materials for Sustainable Energy and Development edited by Prof. Max Q. Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.

Professor San Ping Jiang is a professor at the Curtin Centre for Advanced Energy Science and Engineering, Curtin University, Australia and Adjunct Professor of the Huazhong University of Science and Technology, China. He also holds Visiting/Guest Professorships at Wuhan University of Technology, University of Science and Technology of China (USTC), Sichung University, and Shandong University. Dr. Jiang has broad experience in both academia and industry, having held positions at Nanyang Technological University, the CSIRO Manufacturing Science and Technology Division in Australia, and Ceramic Fuel Cells Ltd (CFCL). His research interests encompass solid oxide fuel cells, proton exchange and direct methanol fuel cells, and direct alcohol fuel cells. With an h-index of 32, Jiang has published over 180 journal papers, which have acrrued -3500 citations. In 2007 two papers were ranked in the top 1% in Chemistry and Engineering (Web of Sciences Essential Science Indicators).
Professor Yushan Yan has been a professor at the University of California, Riverside since 1998. Prior to that he worked for AlliedSignal Inc. as a Senior Staff Engineer and Project Manager. His research focuses on zeolite thin films for semiconductors and aerospace applications and new materials for cheaper and durable fuel cells. He is co-Founder and Director of the start-up companies Full Cycle Energy and Zeolite Materials Solutions (ZSM). To-date Yan has published ca. 100 journal articles which have attracted an average of 33 citations per paper.
ISBN 9783527644278
Artikelnummer 9783527644278
Medientyp E-Book - ePUB
Copyrightjahr 2013
Verlag Wiley-VCH
Umfang 392 Seiten
Sprache Englisch
Kopierschutz Adobe DRM